
2D Implement GreedyMotifSearch

Greedy Motif Search Problem
Implement GreedyMotifSearch.

Input: A collection of strings Dna, and integers k and t.
Output: A collection of strings resulting from running GREEDYMOTIFSEARCH(Dna, k, t).

Formatting

Input: Space-separated integers k and t, followed by a newline-separated collection of strings Dna.
Output: A space-separated list of strings resulting from running GREEDYMOTIFSEARCH(Dna, k, t)
(If at any step you find more than one Profile-most probable k-mer in a given string, use the one
occurring first).

Constraints

• The integer k will be between 1 and 102.

• The integer t will be between 1 and 102.

• The number of strings in Dna will be between 1 and 102.

• The length of each string in Dna will be between 1 and 102.

• Each string in Dna will be a DNA string.



Test Cases

Case 1

Description: The sample dataset is not actually run on your code.

Input:
3 5

GGCGTTCAGGCA AAGAATCAGTCA CAAGGAGTTCGC CACGTCAATCAC CAATAATATTCG

Output:
CAG CAG CAA CAA CAA

Case 2

Description: This dataset checks that your code always picks the first-occurring Profile-most Prob-
able k-mer in a given sequence of Dna. In the first sequence (GCCCAA), GCC and CCA are both
Profile-most Probable k-mers. However, you must return GCC since it occurs earlier than CCA.
Thus, if the first sequence of your output is CCA, this test case fails your code.

Input:
3 4

GCCCAA GGCCTG AACCTA TTCCTT

Output:
GCC GCC AAC TTC



Case 3

Description: This dataset checks if your code has an off-by-one error at the beginning of each
sequence of Dna. Notice that the first four motifs of the solution occur at the beginning of their
respective sequences in Dna, so if your code did not check the first k-mer in each sequence of Dna,
it would not find these sequences.

Input:
5 8

GAGGCGCACATCATTATCGATAACGATTCGCCGCATTGCC

TCATCGAATCCGATAACTGACACCTGCTCTGGCACCGCTC

TCGGCGGTATAGCCAGAAAGCGTAGTGCCAATAATTTCCT

GAGTCGTGGTGAAGTGTGGGTTATGGGGAAAGGCAGACTG

GACGGCAACTACGGTTACAACGCAGCAACCGAAGAATATT

TCTGTTGTTGCTAACACCGTTAAAGGCGGCGACGGCAACT

AAGCGGCCAACGTAGGCGCGGCTTGGCATCTCGGTGTGTG

AATTGAAAGGCGCATCTTACTCTTTTCGCTTTCAAAAAAA

Output:
GAGGC TCATC TCGGC GAGTC GCAGC GCGGC GCGGC GCATC

Case 4

Description: This dataset checks if your code has an off-by-one error at the end of each sequence of
Dna. Notice that the first two motifs of the solution occur at the end of their respective sequences
in Dna, so if your code did not check the end k-mer in each sequence of Dna, it would not find these
sequences.

Input:
6 5

GCAGGTTAATACCGCGGATCAGCTGAGAAACCGGAATGTGCGT

CCTGCATGCCCGGTTTGAGGAACATCAGCGAAGAACTGTGCGT

GCGCCAGTAACCCGTGCCAGTCAGGTTAATGGCAGTAACATTT

AACCCGTGCCAGTCAGGTTAATGGCAGTAACATTTATGCCTTC

ATGCCTTCCGCGCCAATTGTTCGTATCGTCGCCACTTCGAGTG

Output:
GTGCGT GTGCGT GCGCCA GTGCCA GCGCCA



Case 5

Description: This test dataset checks if your code is correctly breaking ties when calling Profile-
most Probable k-mer. Specifically, it makes sure that, when you call Profile-most Probable k-mer, in
the event of a tie, you choose the first-occurring k-mer.

Input:
5 8

GACCTACGGTTACAACGCAGCAACCGAAGAATATTGGCAA

TCATTATCGATAACGATTCGCCGGAGGCCATTGCCGCACA

GGAGTCTGGTGAAGTGTGGGTTATGGGGCAGACTGGGAAA

GAATCCGATAACTGACACCTGCTCTGGCACCGCTCTCATC

AAGCGCGTAGGCGCGGCTTGGCATCTCGGTGTGTGGCCAA

AATTGAAAGGCGCATCTTACTCTTTTCGCTTAAAATCAAA

GGTATAGCCAGAAAGCGTAGTTAATTTCGGCTCCTGCCAA

TCTGTTGTTGCTAACACCGTTAAAGGCGGCGACGGCAACT

Output:
GCAGC TCATT GGAGT TCATC GCATC GCATC GGTAT GCAAC

Case 6

Description: A larger dataset of the same size as that provided by the randomized autograder.
Check input/output folders for this dataset.


