Frequent Words with Mismatches and Reverse Complements Problem
Input: A string Text as well as integers k and d. (You may assume k< 12 and d < 3.)
Output: All k.-mers Pattern maximizing the sum Count (Text, Pattern) + Count (Text, Pattern)
over all possible k-mers.



SAMPLE DATASET:

Input:
ACGTTGCATGTCGCATGATGCATGAGAGCT
41

Output:
ACAT ATGT

The sample dataset is not actually run on your code.



TEST DATASET 1:

Input:
AAAAAAAAAA
21

Output:
AT TA

This dataset checks that your code includes A-mers that do not actually appear in Text.
Notice here that, although AT nor TA actually appear in Text, they are valid because they appear
in Text with up to 1 mismatch (i.e. 0 or 1 mismatch).



TEST DATASET 2:

Input:
AGTCAGTC

4 2

Output:
AATT GGCC

This dataset makes sure that your code is not accidentally swapping k and d.



TEST DATASET 3:

Input:
AATTAATTGGTAGGTAGGTA
4 0

Output:
AATT

This dataset makes sure you are finding k-mers in both Text and the Reverse Complement
of Text.



TEST DATASET 4:

Input:

ATA

31

Output:

AAA AAT ACA AGA ATA ATC ATG ATT CAT CTA GAT GTA TAA TAC TAG TAT
TCT TGT TTA TTT

This dataset first checks that k&-mers with exactly d mismatches are being found. Then, it
checks that k-mers with less than d mismatches are being allowed (i.e. you are not only allowing
k-mers with exactly d mismatches). Next, it checks that you are not returning too few k-mers.
Last, it checks that you are not returning too many k-mers.



TEST DATASET 5:
Input:

AAT

30

Output:
AAT ATT

This dataset checks that your code is looking at BOTH Text and its Reverse Complement
(i.e. not just looking at Text, and not just looking at the Reverse Complement of Text, but looking
at both).



TEST DATASET 6:

Input:
TAGCG
21

Output:
CA CC GG TG

This dataset checks that your code correctly delimiting your output (i.e. using spaces) and
verifies that your k-mers are actually of length £.



