
A

Introduction to Pseudocode

What is Pseudocode?

An algorithm is a sequence of instructions to solve a well-formulated computational
problem specified in terms of its input and output. An algorithm uses the input to
generate the output. For example, the algorithm PATTERNCOUNT uses strings Text and
Pattern as input to generate the number COUNT(Text, Pattern) as its output.

In order to solve a computational problem, you need to carry out the instructions
specified by the algorithm. For example, if we want you to count how many times
Pattern appears in Text, we could tell you to do the following:

1. Start from the first position of Text and check whether Pattern appears in Text
starting at its first position.

2. If yes, draw a dot on a piece of paper.

3. Move to the second position of Text and check whether Pattern appears in Text
starting at its second position.

4. If yes, draw another dot on the same piece of paper.

5. Continue until you reach the end of Text.

6. Count the number of dots on the paper.

Since humans are slow, make mistakes, and hate repetitive work, we invented
computers, which are fast, love repetitive work, and never make mistakes. However,
while you may easily understand the above instructions for counting the number of
occurrences of Pattern in Text, no computer in the world can execute them. The only

115



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

reason you can understand them is because you have been trained for many years to
understand human language. For example, we didn’t specify that you should start
from a blank piece of paper without any dots, but you assumed it. We didn’t explain
what it means to “reach the end of Text”; at what position of Text should we stop?

Because computers do not understand human language, algorithms must be rephrased
in a programming language (such as Python, Java, C++, Perl, Ruby, Go, or dozens of
others) in order to give the computer specific instructions. However, we don’t want to
describe algorithms in a specific language because it may not be your favorite

Our focus is on algorithmic ideas rather than on implementation details, which is
why we will meet you halfway between human languages and programming languages
by using pseudocode. By emphasizing ideas rather than implementation details, pseu-
docode is able to describe algorithms without being too formal, ignoring many of the
tedious details that are required in a specific programming language. At the same time,
pseudocode is more precise and less ambiguous than the instructions we gave above
for counting a pattern in a text.

For example, consider the following pseudocode for an algorithm called DISTANCE,
whose input is four numbers (x1, y1, x2, y2) and whose output is one number d. Can
you guess what it does?

DISTANCE(x1, y1, x2, y2)
d (x2 � x1)2 + (y2 � y1)

2

d 
p

d
return d

The first line of pseudocode specifies the name of an algorithm (DISTANCE), followed
by a list of arguments that it requires as input (x1, y1, x2, y2). Subsequent lines contain
the statements that describe the algorithm’s actions, and the operation return reports
the result of the algorithm.

We can invoke an algorithm by passing it the appropriate values for its arguments.
For example, DISTANCE(1, 3, 7, 5) would return the distance between points (1, 3) and
(7, 5) in two-dimensional space, by first computing

d 7� 1)2 + (5� 3)2 = 40

and then computing

d p40 .

116



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

The pseudocode for DISTANCE uses the concept of a variable, which contains some
value and can be assigned a new value at different points throughout the course of an
algorithm. To assign a new value to a variable, we use the notation

a b ,

which sets the variable a equal to the value stored in variable b. For example, in the
pseudocode above, when we compute DISTANCE(1, 3, 7, 5), d is first assigned the value
(7� 1)2 + (5� 3)2 = 40 and then is assigned the value

p
40.

Furthermore, we can use any name we like for variable names. For example, the
following pseudocode is equivalent to the previous pseudocode for DISTANCE.

DISTANCE(x, y, z, w)
abracadabra (z� x)2 + (w� y)2

abracadabra 
p

abracadabra
return abracadabra

Whereas computer scientists are accustomed to pseudocode, we fear that some biologists
reading this book might decide that pseudocode is too cryptic and therefore useless.
Although modern biologists deal with algorithms on a daily basis, the language they
use to describe an algorithm may be closer to a series of steps described in plain English.

Accordingly, some bioinformatics books are written without pseudocode. Unfortu-
nately, this language is insufficient to describe the complex algorithmic ideas behind
various bioinformatics tools that biologists use every day.

To be able to explain complex algorithmic ideas, we will need to delve deeper into
the details of pseudocode. As a result, you will be able not only to understand the
algorithms in this book, but use pseudocode to design your own algorithms!

Nuts and Bolts of Pseudocode

We have thus far described pseudocode only superficially. We will now discuss some
of the details of pseudocode that we use throughout this book. We will often avoid
tedious details by specifying parts of an algorithm in English, using operations that are
not listed below, or by omitting noncritical details.

117



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

if conditions

The algorithm MINIMUM2 shown below has two numbers (a and b) as its input and a
single number as its output. What do you think that it does?

MINIMUM2(a, b)
if a > b

return b
else

return a

This algorithm, which computes the minimum of two numbers, uses the following
construction:

if statement X is true
execute instructions Y

else
execute instructions Z

If statement X is true, then the algorithm executes instructions Y; otherwise, it executes
instructions Z. For example, MINIMUM2(1, 9) returns 1 because the condition “1 > 9”
is false.

The following pseudocode computes the minimum of three numbers.

MINIMUM3(a, b, c)
if a > b

if b > c
return c

else
return b

else
if a < c

return a
else

return c

We may also use else if, which allows us to consider more than two different possi-
bilities in the same if statement. For example, we can compute the minimum of three

118



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

numbers as follows.

MINIMUM3(a, b, c)
if a > c and b > c

return c
else if a > b and c > b

return b
else

return a

Both of these algorithms are correct, but below is a more compact version that uses the
MINIMUM2 function that we already wrote as a subroutine, or a function that is called
within another function. Programmers break their programs into subroutines in order
to keep the length of functions short and to improve readability.

MINIMUM3(a, b, c)
if a > b

return MINIMUM2(b, c)
else

return MINIMUM2(a, c)

STOP and Think: Can you rewrite MINIMUM3 using just a single line of pseu-
docode?

EXERCISE BREAK: Write pseudocode for an algorithm MINIMUM4 that com-
putes the minimum of four numbers.

Sometimes, we may omit the “else” statement.

for loops

Consider the following problem.

119



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

Summing Integers Problem:
Compute the sum of the first n positive integers.

Input: A positive integer n.
Output: The sum of the first n positive integers.

If n were a fixed number, then we could solve this problem using our existing frame-
work. For example, the following program SUM5 returns the sum of the first five
integers (i.e., 1 + 2 + 3 + 4 + 5 = 15).

SUM5( )
sum 0
i 1
sum sum + i
i i + 1
sum sum + i
i i + 1
sum sum + i
i i + 1
sum sum + i
i i + 1
sum sum + i
return sum

We could then write SUM6, SUM7, and so on. However, we cannot endorse this pro-
gramming style! After all, to solve the Summing Integers Problem for an arbitrary
integer n, we will need an algorithm that takes n as its input. This is achieved by the
following algorithm, which we call GAUSS.

GAUSS(n)
sum 0
for i 1 to n

sum sum + i
return sum

120



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

GAUSS employs a for loop that has the following format:

for i a to b
execute X

This for loop first sets i equal to a and executes instructions X. Afterwards, it increases i
by 1 and executes X again. It repeats this process by increasing i by 1 until it becomes
equal to b, when it makes a final execution of X. That is, i varies through the values
a, a + 1, a + 2, . . . , b� 1, b during execution of the loop.

while loops

A different way of summing the first n integers, called ANOTHERGAUSS, is shown
below.

ANOTHERGAUSS(n)
sum 0
i 1
while i  n

sum sum + i
i i + 1

return sum

This algorithm uses a while loop having the following format:

while statement X is true
execute Y

The while loop checks condition X; if X is true, then it executes instructions Y. This
process is repeated until X is false. (Note: if X winds up always being true, then the
while loop enters an infinite loop, which you should avoid at all costs, because your
algorithm will never end.) In the case of ANOTHERGAUSS, the loop stops executing
after n trips through the loop, when i eventually becomes equal to n+ 1 and the numbers
1 through n have been added to sum.

121



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

Recursive algorithms

Below is yet another algorithm solving the Summing Integers Problem.

RECURSIVEGAUSS(n)
if n > 0

sum RECURSIVEGAUSS(n� 1) + n
else

sum 0
return sum

You may be confused by the fact that RECURSIVEGAUSS(n) calls RECURSIVEGAUSS(n�
1) as a subroutine. So imagine that you are computing the sum of the first 100 positive
integers, but you are lazy and ask your friend to compute the sum of the first 99 positive
integers for you. As soon as your friend has computed it, you will simply add 100 to
the result, and you are done! Yet little do you know that your friend is just as lazy, and
she asks her friend to compute the sum of the first 98 integers, to which she adds 99
and then passes to you. The story continues until a friend is assigned 1. Although every
individual in this chain of friends is lazy, the group is nevertheless able to compute the
sum.

RECURSIVEGAUSS presents an example of a recursive algorithm, which subcon-
tracts a job by calling itself (on a smaller input).

EXERCISE BREAK: Can you write one line of pseudocode solving the Summing
Integers Problem?

You have undoubtedly been wondering why we have named all these summing algo-
rithms “Gauss”. In 1785, a primary school teacher asked his class to sum the integers
from 1 to 100, assuming that this task would occupy them for the rest of the day. He
was shocked when an 8 year old boy thought for a few seconds and wrote down the
answer, 5,050. This boy was Karl Gauss, and he would go on to become one of the
greatest mathematicians of all time. The following one-line algorithm implements his
idea for solving the Summing Integers Problem. (Why does it work?)

GAUSS(n)
return (n + 1) · n/2

122



W H I C H D N A PAT T E R N S P L AY T H E R O L E O F M O L E C U L A R C L O C K S ?

Arrays

Finally, when writing pseudocode, we may also use an array, or an ordered sequence of
variables. We often use a single letter to denote an array, e.g., a = (a1, a2, . . . , an).

EXERCISE BREAK: Consider the algorithm following this exercise. What does
it do?

RABBITS(n)
a1  1
a2  1
for i 3 to n

ai  ai�1 + ai�2

return a

RABBITS(n) computes the first n Fibonacci numbers and places them in an array. Why
do you think that we called it RABBITS?

123


